neighbour$500384$ - translation to italian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

neighbour$500384$ - translation to italian

SPATIAL INTERPOLATION METHOD
Natural neighbour; Natural neighbour interpolation; Natural neighbor

neighbour      
n. vicino di casa
duty of care         
  • Flag (in French) supporting the responsible business initiative.
  • A notice in the Republic of Ireland informing potential entrants on premises of limits to the duty of care
LEGAL OBLIGATION TO PROVIDE REASONABLE CARE WHEN PERFORMING AN ACTIVITY THAT COULD HARM OTHERS
Ordinary care; Reasonable care; Duty of Care; Duty (tort law); Neighbour principle; Duty-of-care
dovere di guidare con attenzione
reasonable care         
  • Flag (in French) supporting the responsible business initiative.
  • A notice in the Republic of Ireland informing potential entrants on premises of limits to the duty of care
LEGAL OBLIGATION TO PROVIDE REASONABLE CARE WHEN PERFORMING AN ACTIVITY THAT COULD HARM OTHERS
Ordinary care; Reasonable care; Duty of Care; Duty (tort law); Neighbour principle; Duty-of-care
cura ragionevole

Definition

beggar-my-neighbour
¦ noun a card game for two players in which the object is to acquire one's opponent's cards.
¦ adjective (of national policy) self-aggrandizing at the expense of competitors.

Wikipedia

Natural neighbor interpolation

Natural neighbor interpolation is a method of spatial interpolation, developed by Robin Sibson. The method is based on Voronoi tessellation of a discrete set of spatial points. This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation, in that it provides a smoother approximation to the underlying "true" function.

The basic equation is:

G ( x ) = i = 1 n w i ( x ) f ( x i ) {\displaystyle G(x)=\sum _{i=1}^{n}{w_{i}(x)f(x_{i})}}

where G ( x ) {\displaystyle G(x)} is the estimate at x {\displaystyle x} , w i {\displaystyle w_{i}} are the weights and f ( x i ) {\displaystyle f(x_{i})} are the known data at ( x i ) {\displaystyle (x_{i})} . The weights, w i {\displaystyle w_{i}} , are calculated by finding how much of each of the surrounding areas is "stolen" when inserting x {\displaystyle x} into the tessellation.

Sibson weights
w i ( x ) = A ( x i ) A ( x ) {\displaystyle w_{i}(\mathbf {x} )={\frac {A(\mathbf {x} _{i})}{A(\mathbf {x} )}}}

where A(x) is the volume of the new cell centered in x, and A(xi) is the volume of the intersection between the new cell centered in x and the old cell centered in xi.

Laplace weights
w i ( x ) = l ( x i ) d ( x i ) k = 1 n l ( x k ) d ( x k ) {\displaystyle w_{i}(\mathbf {x} )={\frac {\frac {l(\mathbf {x} _{i})}{d(\mathbf {x} _{i})}}{\sum _{k=1}^{n}{\frac {l(\mathbf {x} _{k})}{d(\mathbf {x} _{k})}}}}}

where l(xi) is the measure of the interface between the cells linked to x and xi in the Voronoi diagram (length in 2D, surface in 3D) and d(xi), the distance between x and xi.